

 1

TsLink3 High Availability

TeleSoft enables each of their customers to select the particular redundancy strategy that best
suits their system architecture and implementation. TsLink3 code includes generic High
Availability (HA) hooks to support the customer’s choice of 1:1, N:1, and N:M.

Providing hooks for several types of HA implementations enables each customer to select and
optimize the means of moving data from their primary board to another board.

Basic Theory of Redundancy:
TsLink3 protocol stacks are state machines composed of “state information” and “combinatorial
logic” (See Figure 1: Abstract State Machine). The State Information is kept in structures and
TeleSoft gives the user control over the structures to support High Availability.

Figure 1: Abstract State Machine

The inputs to the TsLink3 software stack are messages from the lower layers and messages from
the user application (layer 4 and up).

TeleSoft International, Inc.
4029 S. Capital of Texas Hwy, Ste 220
Austin, TX 78704-7920

Tel: 512.373.4224
Fax: 512.373.4181
sales@telesoft-intl.com

State
Information

System
Inputs

State Machine

Combinatorial
Logic

System
Output

2

Types of High Availability:
There are many types of redundancy, including 1:1, N:1, and N:M.

1:1 Redundancy requires one backup board for every active (primary) board. The active board
sends state information to the backup, the backup takes the state information, populates its own
structures, and waits. When failover occurs, the backup starts running with minimal startup
overhead.

• Advantages: The system is ready to restart immediately.
• Disadvantages: Requires one backup for each active board, so cost, rack space, and

power consumption (and heat generated and battery backup) are all very high.
N:1 Redundancy requires one backup board for every “N” active boards. The active boards all
send state information to the backup, the backup takes the state information, populates its own
structures, and waits. When failover occurs, the backup must select the proper subset of
structures to use, and may have to copy that data to a “working” set of structures. An alternate
approach is to use some other board to hold all of the state information for the active boards, and
populate the backup unit on failover.

• Advantages: lower cost, lower power consumption, lower rack space.
• Disadvantages: one backup unit may not be enough, slower recovery due to having to

select from multiple backup sets, backup boards may need a large amount of memory.

N:M Redundancy requires “M” backup boards for every “N” active boards. The active boards all
send state information to all (or some subset) of the backups, the backups take the state
information, populate their own structures, and wait. When failover occurs, the backup must
select the proper subset of structures to use, and may have to copy that data to a “working” set of
structures. An alternate approach is to use some other board to hold all of the state information
for the active boards, and populate the backup unit on failover.

• Advantages: lower cost, lower power consumption, lower rack space.
• Disadvantages: slower recovery due to having to select from multiple backup sets,

backup boards need large amounts of memory. This approach may also require more
system bus bandwidth, as each active board may have to send state information to
several backup boards.

Memory Backup requires that the memory of each processor running the TsLink3 code be
backed up in hardware. This is generally done by having an external memory board that is part
of a backup set. Writes to one memory location are stored redundantly on two or more separate
memory boards. If one board fails, the other takes over transparently. Note that the processor
board must also be backed up.

• Advantages: no special programming required for HA.
• Disadvantages: cost, hardware complexity, rack space, power, heat.

When to backup state information
There is no one good answer to determine when state information should be backed up.

Systems that back up state information on every message will not lose any calls in progress and
may not drop dialed digits. However, this frequency of backup leads to high system bus usage
and a higher processor load.

Backing up state information for only two states (“active” and “not active”) is an industry-accepted
minimum and generally fulfills legal and billing requirements (“no active calls shall be dropped”).
However, backing up state information for only two states will result in calls-in-progress being
dropped which may become an issue with some of the supplementary services, such as call hold.

It is possible to find a middle ground, where “significant” events cause the state information to be
backed up (Checkpointing). However, each customer has a different definition of what qualifies
as “significant events.”

3

TeleSoft believes that the customer is always right, so we enable you to decide when to backup
the state information for each call.

When to restore state information
System architecture determines when to restore state information. In this document, “backup” is
the term used to describe copying information from the active board into memory. “Restore”
refers to populating the backup board with the state information.

A 1:1 redundant system will backup data from the active board and immediately restore it to the
backup board. At failover, the backup will be loaded with all state information and may start
processing messages almost immediately.

An M:N redundant system may backup data from the active board to a master system controller
board. At failover, the data would be “restored” to the working memory of the backup board.
Adding the master system controller into the equation will result in a longer recovery time.

Alternately, in the M:N redundant system, the backup boards may each have multiple “images”,
one for each primary board that it handles. The backup boards would be “restored” as in the 1:1
example above, with each active board backing up state information and the backup boards
immediately restoring the data to the correct image. At failover, system pointers are set to the
image of the failed board. While this gives a quicker recovery time, it increases bus bandwidth
and processor utilization, and requires more memory on the backup boards.

Clearly, there is no one best answer. Each customer has different needs so TeleSoft enables
you to implement the strategy that will work best for your system.

Failure modes
This paper addresses only board failures. Failures of the copper wire or fiber optic line are
beyond the scope of this document.

Failure modes include an entire board failure and a partial board failure.

A failure of the entire board may be caused by a power failure, a bad processor, or some other
critical component failing (or by a technician pulling the wrong board.) In this case, some other
entity must determine and report the failure of the board.

A board may also fail when a component fails that does not affect the CPU, memory, or
communication channels to other boards. An example of this would be the failure of an HDLC
controller or line interface unit. In this case, the board can report its failure, and the system
controller can help it to perform a more graceful shutdown.

Elements of High Availability
Systems supporting High Availability have similar functional requirements, and need to perform
many of the same primitive operations:

1. Cause the backup unit to create a call when a call is created on the active board
2. Read state information from the active board for a specified call
3. Write (backup) state information to the backup board for a specified call
4. Terminate the “call” on the backup unit when the call is terminated on the active board.
5. Periodically audit to insure backup is an accurate copy of active board

a. This requires the ability to read the state information from the backup board, but
this may be the same function as reading state information from the active board.

6. Perform the failover operation so that the backup board becomes active
7. Start appropriate call timers when the system failover occurs.
8. Monitor the active and backup boards to insure that they are operating properly
9. Notify operators that a failure has occurred.

4

TsLink3 software directly supports the first seven items, as detailed in the next section. Because
system architectures differ, the user must implement a method to transfer the state information
from active to (optional) intermediate storage area to backup board.

Monitoring the boards is the user’s responsibility. Polling primitives may be created to ensure
processor activity. Failure of the interface chips will cause protocol failures which will result in
consistent N_DISC_IN on call requests made on specific physical interfaces.

Notification of failure is system dependent and is the user’s responsibility.

TeleSoft’s support of High Availability
TeleSoft provides hooks that allow the customer to support all of the above listed forms of High
Availability.

TeleSoft supplies an implementation that runs on a single processor. In order to implement HA,
the user must write a few routines in order to transfer the data from one board to another.

The user must also determine when the active board has failed, and cause the system to failover
to the backup board.

TsLink3 provides five basic primitives to support HA. These are

N_PRI_CONTEXT_IN asynchronous primitive notifying application, or control

layer, when the call state changes.
N_PRI_CONTEXT_RQ primitive requesting call context information
N_PRI_CONTEXT_RS primitive containing call context information in response

to request; contains same information as
N_PRI_CONTEXT_IN

N_PRI_CONTEXT_SET_RQ Sets up call context information
N_PRI_CONTEXT_ACT_RQ Activates call from stored information:

� Allocates “connid” (handle)
� Allocates CRV
� Starts timers
� Assigns TEIs and starts L2/L1 establishment
� (Hardware and general stack initialization must

be done by user prior to use of SET or ACT
requests.)

Although these primitives do carry adequate information to backup and activate basic PRI calls,
all TsLink3 primitives are designed to be customized for specific application needs.

From these five basic primitives, the first seven elements of High Availability may be supported as
follows (also see Table 1: Elements of High Availability related to primitives, below):

1. Use N_PRI_CONTEXT_RQ/RS and N_PRI_CONTEXT_SET_RQ to receive,
 and copy context information.
2. Use N_PRI_CONTEXT_RQ/RS to get information.
3. Use N_PRI_CONTEXT_SET_RQ to set information.
4. Use N_PRI_CONTEXT_SET_RQ to set information.
5. Use N_PRI_CONTEXT_IN to store information or periodically poll using
 N_PRI_CONTEXT_RQ/RS. We support both to allow for specific needs.
6. Use N_PRI_CONTEXT_ACT_RQ to start up calls on backup board.
7. Created (using default timer values) at use of N_PRI_CONTEXT_ACT_RQ.

5

The following table relates the primitives to the elements of High Availability:

Table 1: Elements of High Availability related to primitives

1 Cause the backup unit to create a call when a call
is created on the active board

Use N_PRI_CONTEXT_RQ/RS and
N_PRI_CONTEXT_SET_RQ to receive,
and copy context information

2 Read state information from the active board for a
specified call

Use N_PRI_CONTEXT_RQ/RS to get
information

3 Write (backup) state information to the backup
board for a specified call

Use N_PRI_CONTEXT_SET_RQ to set
information

4 Terminate the “call” on the backup unit when the
call is terminated on the active board.

Use N_PRI_CONTEXT_SET_RQ to set
information

5 Periodically audit to insure backup is an accurate
copy of active board

Use N_PRI_CONTEXT_IN to store
information or periodically poll using
N_PRI_CONTEXT_RQ/RS. We support
both to allow for specific needs.

6 Perform the failover operation so that the backup
board becomes active

Use N_PRI_CONTEXT_ACT_RQ to start
up calls on backup board.

7 Start appropriate call timers when the system
failover occurs.

Created (using default timer values) at use
of N_PRI_CONTEXT_ACT_RQ.

8 Monitor the active and backup boards to insure that
they are operating properly

Depends on system architecture

9 Notify operators that a failure has occurred. Dependent on customer’s marketing
requirements

