
TeleSoft
Internat ional, Inc.

 1 TeleSoft International, Inc.

Open Source Compared with Commercial SIP Stack: Case Study

Introduction
Developers of SIP-based products have several sources of SIP stacks to build into their products. It
is understandable that many such developers would consider “free” open source SIP stacks as one
way to go, but the initial cost of a SIP stack is only one factor in considering the overall cost,
complexity and risk of open source compared with a commercial protocol stack.

This document provides a case study of the pros and cons of a commercial SIP stack, CompactSIP,
compared with an open source stack, Sofia-SIP.

When considering the costs related to SIP over a product’s lifetime, there are several key factors:
cost of learning the SIP stack, ease-of-use of the API, and maintaining and enhancing the product.
A short video http://www.telesoft-intl.com/video/index.html discusses key issues in considering
open source vs. commercial solutions on a general level.

CompactSIP
CompactSIP is a fully-featured, well-documented, and proven SIP source code stack from TeleSoft
International. CompactSIP is notable for its very small memory footprint and ease of portation and
integration to a variety of applications running under a range of operating systems/environments.
With customers in over 20 countries on six continents, TeleSoft International, Inc., (www.telesoft-
intl.com) has been a supplier of quality protocol stacks and superior technical support since 1992.

Sofia-SIP
Sofia-SIP is an open source SIP stack with a subset of the features of CompactSIP. It is a project
developed and supported by a couple of engineers in Nokia and other contributors on a volunteer
basis.

CompactSIP vs. Sofia-SIP: Differences at a glance

Attribute CompactSIP Sofia-SIP
Reflects experience building & supporting protocol
stacks, with resulting quality of architecture & code
design (reflected in footprint, ease of development)

High Low

Modular design enables optimization to application Yes No

Memory footprint 75-150 KB 600 KB+

Complexity based on number of API calls 14 > 100

Other SIP-related application complexity Low High

Ease of using pre-developed apps as templates High Low

Portable design with support for multiple OSes (11+) High Low

Quality of documentation and code comments High Medium

Comments as % of example app lines of code 10% 5%

Tech support responsiveness & quality High Uncertain

Cost of stack and example app source code Medium Low

Learning curve & initial development cost Low High

Open Source Compared with Commercial SIP Stack

 2 TeleSoft International, Inc.

Maintenance & enhancement cost Low High

Extensive interop testing High Uncertain

Development team Focused Diffuse

Schedule risk (complexity increases risk) Low High

Experience Developing and Supporting Protocol Stacks
In developing CompactSIP as a coherent, robust, easy-to-use technology building block, TeleSoft
has leveraged its many years of experience in developing communications protocols, and very
importantly, supporting customers integrating TeleSoft stacks into their products.

Successful commercial stack providers make their living by how well designed and documented their
products are; they have a built-in motivation to continually offer better products. Open source, in
contrast, is a volunteer effort, not for profit, even when a big company like Nokia is involved.

Communications building block development is very specialized and the product is different from
most software because it is distributed in source rather than binary form. Few organizations have
the necessary experience developing such specialized source code products. TeleSoft brings to its
SIP stack architecture and code design decades of experience helping hundreds of companies
worldwide develop their communications products.

By contrast, software developed by a volunteer company or ad-hoc committee just doesn’t have the
built-in mechanisms for cleanness and coherence of design that commercial products do. While
Nokia successfully sells phones, Sofia-SIP support is a revenue loser for them, and supporting others
in using protocol stacks is not their business.

The disconnection of developers and support from revenue generation creates a major disadvantage
for Sofia-SIP users: market forces do not operate to weed out overly complex and confusing code.
To the contrary, open source by nature has built-in impediments to simplicity, conceptual integrity
and consistency.

Open source that is overly complex can survive because of the initial price, and the unwary
developer will find out the hard way, due to difficulty of development and inevitable schedule slips.
Only then, when it is too late, do many developers see that the pitfalls of open source are real, and
that the cost can actually be greater over the initial development period, and even greater over the
lifetime of a product. The adage “you get what you pay for” really applies here.

Memory Footprint
The Sofia-SIP executable code memory footprint is greater than four times the size of CompactSIP:
Sofia-SIP size is greater than 600KB (Text segment) vs. CompactSIP size of 75-150KB (Text
segment). This difference significantly impacts performance and power consumption in many
applications. (Reference: http://osdir.com/ml/telephony.sofia-sip.devel/2007-01/msg00076.html)

Complexity Based on Number of API Function Calls
The CompactSIP API has 14 API function calls. To perform the same functions, Sofia-SIP has well
over one hundred API calls (Sofia-SIP is so complex that it is hard to determine exactly how many
calls there are!).

Other SIP-related Application Complexity
Using Sofia-SIP to develop, maintain and enhance applications is significantly more complex
compared with CompactSIP based on factors beyond the number of API calls. Some examples:

Thread Management
Sofia-SIP specifies, and is entangled with, thread/task management. This limits portability
and unnecessarily complicates/restricts applications, because Sofia-SIP developers have to

Open Source Compared with Commercial SIP Stack

 3 TeleSoft International, Inc.

follow a particular thread management model. In contrast, the CompactSIP API is a simple
function library that makes no assumptions about how it is called and imposes no thread/task
structure. CompactSIP is called as a library independent of threads, tasks, processes,
polling, or other OS scheduling mechanism. OS scheduling dependencies should not be part
of a well-architected SIP stack.

Open Source Compared with Commercial SIP Stack

 4 TeleSoft International, Inc.

Protocol Abstraction Complexity
Each stack requires an abstraction layer to be able to provide application access to SIP
services and message elements. CompactSIP has a simple mechanism of a few API calls and
a few dozen elements for a simple, uniform SIP message access method. Sofia-SIP uses a
much more complex tag-based interface with an order of magnitude more elements to
perform the same functions.

Ease of using pre-developed applications as templates
CompactSIP provides a choice of key applications with a high-degree of fit-and-finish, portability and
quality documentation:

• TsSmartPhone SDK for mobile, wired or soft SmartPhones, highly portable, and requiring an
absolute minimum of application functionality to implement a fully featured VoIP phone.

• TeleSoftPhone softphone reference design, highly portable, and requiring an absolute
minimum of application functionality to implement a fully featured VoIP phone.

• TsGATE SIP-PSTN gateway application leveraging CompactSIP with TeleSoft’s extensive,
proven TsLink3 protocol stack for ISDN, T1 RBS and E1 R2 for major world markets.

• TsCONNECT IP-PBX Voice to PSTN Connectivity SDK enables suppliers to easily add host-
based PSTN connectivity to their IP-PBX using a SIP API.

By contrast, the complexity of the Sofia-SIP API makes it difficult to analyze and use the poorly
documented example apps, which require more work for the developer compared with CompactSIP.

Quality of Documentation and Code Comments
CompactSIP documentation is succinct, top-down, easy to get started with. Sofia-SIP
documentation is overwhelming, chaotic and hard to comprehend.

CompactSIP code comments are extensive and descriptive. Comparison of several thousand lines of
code in the app template code available with CompactSIP (cpapp.c) vs. Sofia-SIP (ssip.c) shows that
CompactSIP has about 10% lines of code with comments while Sofia-SIP has about 5%.

Tech Support Responsiveness & Quality
Similar to most open source software, a look at the July, 2008, sofia-sip-develop mailing lists reveals
a disquieting set of problems unresolved a month later, including many that would show up in most
applications. Without a direct connection to the stack supplier, the user has no leverage, no priority
and no certainty of receiving any timely, authoritative tech support.

By contrast, TeleSoft typically responds within 24 hours and usually has each issue resolved within
days. TeleSoft tech support is provided by senior software engineers who develop the code and is
provided promptly by email, by phone and by interactive web-based screen sharing sessions.

SIP-related Learning Curve & Product Development Cost
The initial cost of open source software like Sofia-SIP is lower than a commercial alternative. But
that expense is typically not the biggest part of the development cost. Increasing development time
by a factor of 2 to 3 can more than offset a difference in cost of the starting point software, with the
inevitable increased schedule risk of missing a market window.

Lifetime Product Costs: Maintenance and Enhancement Costs
Maintenance and enhancement costs over the lifetime of a product are frequently significant,
sometimes larger than initial development. When engineers are tasked to update or fix software
that no one has looked at in months or years, it is critical that they inherit an easy-to-understand,
well-documented and responsively supported protocol stack.

