

TsLink3®TsLink3®TsLink3®TsLink3®
API OverviewAPI OverviewAPI OverviewAPI Overview

COPYRIGHT © 1992 - 2003 TeleSoft International/Broadframe Corporation All rights reserved.

TeleSoft International TsLink3 API Overview

TsLink3 API Overview i

TABLE OF CONTENTS

1. General Description ..1
1.1 Relationship of the TsLink3 API to Other Layer Interfaces...1
1.2 Overview of the TsLink3 API ..3
1.3 Ease of Adapting to a Variety of Message Passing Mechanisms...4
1.4 Most Applications Use Only a Small Number of the API Messages ...4

1.4.1 Layer 4 to CE Commonly Used Messages..4
1.4.2 CE to Layer 4 Commonly Used Messages..5

1.5 Common L4<->CE and CE<->L3 Message Set ...5
2. Example of Interface Functions ..7

2.1 Example of an outgoing speech call connection request ..7
2.2 Example of an outgoing disconnection request ..7
2.3 Example of an outgoing data transfer request ..8
2.4 Example of incoming message processing ...9

TeleSoft International TsLink3 API Overview

TsLink3 API Overview 1

1. General Description

TeleSoft provides a Universal API which can be used with all TsLink3 stacks. The rich TsLink3
Universal API coupled with the straightforward structure of TsLink3 protocol stacks enables you to
easily follow the API message flow through the code to determine where to make modifications
required for your application. The API can be used in three different modes:

Unrestricted mode: For complex applications that combine signaling with data protocols or
specialized hardware -- applications that benefit from a very flexible, message-based interface which
allows extensions to the command set and the use of a large set of messages and a wide array of
potential parameters. Can go directly to L2 and L1, primarily for test purposes.

Function-Call Mode: A simple interface for simple applications such as signaling-only. A set of
example functions to be used directly for simple speech applications or used as templates for
application-specific enhancements.

AT Mode: For serial control stream applications, such as TAs. Maps standard ‘AT’ commands to
the Unrestricted API.

 Many projects do not require full understanding of the details of the Unrestricted API, and can use
the higher-level Function-Call or API Mode to accelerate portation.

All of the API modes allow copy-free data transfer by use of “buffer holes” allowed for at creation of
outgoing data blocks. No copying of buffers is needed while a single buffer management mechanism
is maintained.

Early in the integration process, the TeleSoft engineer providing your technical support will work
with you to determine the API features appropriate for your application. The majority of signaling-
only applications require a very small subset of the Unrestricted API messages and parameters,
allowing most options to be ignored. Code examples provided with the stack (including examples
listed in Section 2 of this document) show how easy it is to interface to the TsLink3 Universal API
and quickly begin commanding TsLink3 to setup and teardown calls.

1.1 Relationship of the API Modes to Other Layer Interfaces

There are several software levels at which TsLink3 customers can interface their code to the TsLink3
stack. Figure 1 shows the TsLink3 software layer block diagram illustrating these inter-layer
interfaces. In general, since each of the interfaces is well-defined and has its own message set, the
TsLink3 customer can interface to the TsLink3 code at the top of Layer 1, Layer 2, or Layer 3, or
interface to the “bottom of Layer 4” of the OSI 7-Layer Interconnection Model by making use of the
rich flexibility of the Unrestricted API.

Most commonly, customers interface their to code to TsLink3 at the “bottom of Layer 4“, and can
use the provided Function-call API mode. The Inter-layer boundaries, able to be controlled by the
APIs, are shown in Figure 1 below. The Unrestricted mode is referred to as the “TsLink3 API”
because it is the application interface point common to all of the modes.

TsLink3 API Overview TeleSoft International

2 TsLink3 API Overview

Referring to Figure 1, the CE is a “thin” software entity that is conceptually part of Layer 3 and
provides call control sequencing/coordination between the call setup signaling protocol entities
(Q.931, T1 Robbed-bit Signaling (RBS), E1 Channel Associated Signaling (CAS), etc.) and
(optional) bearer channel user data protocol entities (PPP, X.25, etc.) delivered in a TsLink3 load.

Note: The software block diagram in Figure 1 and the entities contained therein are explained more
fully in the TsLink3 “General Overview” document.

TsLink3 Software Block Diagram
Figure 1

Notes: The main source code directory in which entity’s source code is found is indicated by the
“src” subdirectory name in parentheses (e.g., (ceme)).

Coordinating Entity (ceme)

Layer 3 Q.931
ISDN BRI

(nls)

Layer 3 Q.931
ISDN PRI &

QSIG
(pri_nls)

EIA-464 T1
Robbed-bit &
ITU E1 CAS

& R2
(cas_nls)

PPP/
MLPPP

(ppp)

Layer 3
X.25/PLP

(nlp)

Q.933
Frame
Relay
(q922a

&
q933_nls)

Layer 3

Layer 2
X.25

LAPB
(lap)

Layer 2

Layer 1
Software

Layers 4-7

Customer Code
 (possibly incorporating TeleSoft application interface code (e.g., modem AT command set))

Layer 4 and

above

 TsLink3 API

LOW-LEVEL DRIVERS (LLDs)
(various source directories (*lld*), including support for Motorola, Infineon, Dallas, PMC-Sierra, Intel, and other

manufacturers’ microprocessor, transceiver, HDLC, UART and other devices)

Layer 1

Hardware

BRI S &U
Transceivers

and
D-Channel
HDLC SCC

T1/E1

Transceivers

T1 & E1
Transceivers

and
D-Channel
HDLC SCC

HDLC SCC

HDLC SCC

HDLC
SCC

HDLC
SCC

Layer 2
Q.921/LAPD

(lap)

Layer 3 V.120
 (v_120)

Layer 2
V.120
LAPD
(lap)

Clear
Channel

HDLC
SCC

TeleSoft International TsLink3 API Overview

TsLink3 API Overview 3

1.2 Overview of the TsLink3 API

The TsLink3 API, under Layer 4 control and monitoring, is a message-based system used for:

� Setting up and tearing down connections on telecom lines.
� Monitoring call progress and other status of the lines and connections.
� (Optionally) Sending and receiving user data on bearer channels allocated during connection

setup (not applicable for signaling-only applications).
� (Optionally) Performing certain specialized functions which are application specific and not

needed for most TsLink3 customers and applications.

The API consists of a set of messages, and parameters within messages, to accomplish the above
functions. This document provides a high-level overview of the API. Detailed descriptions of each
message type and parameter are provided in the “TsLink3 Interface Reference Guide,” section 2
“Coordinating Entity Interface.”

Universal API --Uniform Across Different Signaling Protocols
TsLink3 presents a uniform API to customer Layer 4 software across the range of supported
protocols. The customer Layer 4 software exchanges simple protocol-independent messages with the
TsLink3 software to setup a connection, optionally transfer user data, and eventually teardown the
connection independent of the protocol type used in lower layers (e.g., ISDN, T1 RBS, E1 CAS).
The uniform API facilitates the customer’s development of a single Layer 4 code module that uses
the same simple API messages to setup and teardown calls on different telecom lines that may
employ different signaling protocols.

Higher-level Modes created with an Abstraction Layer
The TsLink3 API abstracts (simplifies) the complex, underlying lower layer protocols which hides
unneeded complexity from higher layers so that the customer application interface is straightforward
and is easier to maintain. During the lifetime of the connection, fewer and simpler messages related
to a connection pass to the customer application, across the TsLink3 API, than pass across the lower
layer TsLink3 interfaces.

The TsLink3 API is hardware independent and works with any message passing mechanism. It is
easy to redirect the flow of messages at the TsLink3 API to any customer Layer 4 software message
source/sink because all message interactions between software layer entities in the TsLink3 system
are funneled through a few “send a message” and “receive a message” interface functions. Both the
“send a message” and “receive a message” functions are relatively short C functions which are
concerned only with the mechanics of passing messages, not with how to process messages once
messages are received. For example, when the protocol-independent “receive” function receives a
message, it immediately calls a protocol-specific “process a message” function to parse and process
the message. Simple changes to these “send” and “receive” message functions/files are usually all
that is required for most clients to interface their application to the TsLink3 API.

TsLink3 API Overview TeleSoft International

4 TsLink3 API Overview

1.3 Ease of Adapting to a Variety of Message Passing Mechanisms

At the TsLink3 API (see Figure 1), the L4->CE and CE->L4 message passing mechanism has been
implemented in several ways across many different product types by TeleSoft and its customers.
Message passing mechanisms have included:

• Multitasking system message passing via message queues (i.e., customer Layer 4 is (at least in

part) a set of tasks running on the same microprocessor under the same multitasking OS as the
TsLink3 layer entity tasks and interrupt handlers).

• Bidirectional mailboxes in dual-port RAM (i.e., customer Layer 4 is running on a different
processor than the TsLink3 layer 1 through 3 entities, and the two processors communicate via
dual-port RAM message mailboxes and bidirectional inter-processor interrupts).

• Direct function calls (i.e., both L4 and CE run on the same processor and the “send a message
function” is directly coupled to the “process a message” function and does not need to call the
“receive a message” function.

• Message FIFOs.
• Asynchronous or synchronous serial channel. Our ‘AT’ mapping API is available for ease of use

in this configuration.
• Ethernet

The messages are defined independently of the method of passing them so it is easy to install almost
any physical passing mechanism by changing the appropriate “send” and “receive” functions.

1.4 Most Applications Use Only a Small Number of the API Messages

The TsLink3 API privides a powerful and flexible interface that supports the full range of TsLink3
protocols including ISDN, Robbed-bit/CAS, ML-PPP, Frame Relay,and X.25. Most customers use
only a small subset of the many message types and parameters supported by TsLink3. The following
table lists the message types most commonly used for various applications:

1.4.1 Layer 4 (application interface)-to-CE Commonly Used Messages

Message Type (primcode) Function
N_CONNECT_REQUEST Layer 4 initiates a call/connection.
N_CONNECT_RESPONSE Layer 4 answers a call/connection offered earlier

by the CE via an N_CONNECT_INDICATION.
N_DISCONNECT_REQUEST Layer 4 hangs-up a call/connection.
N_DATA_REQUEST Layer 4 sends a user data block on an existing

connection.

TeleSoft International TsLink3 API Overview

TsLink3 API Overview 5

1.4.2 CE-to-Layer 4 (application interface) Commonly Used Messages

Message Type (primcode) Function
N_CONNECT_INDICATION Layer 4 is offered an incoming

call/connection.
N_CONNECT_CONFIRMATION The far end has answered a call/connection

requested previously by Layer 4 via an
N_CONNECT_REQUEST.

N_DISCONNECT_INDICATION The far end of a call/connection has hung
up/disconnected.

N_DISCONNECT_CONFIRMATION The far end has finished hanging
up/disconnecting a call/connection previously
disconnected by Layer 4 via an
N_DISCONNECT_REQUEST.

N_DATA_INDICATION Layer 4 is passed a user data block received
from the far end on an existing connection.

N_STATUS_INDICATION Layer 4 is passed status related to a particular
call/connection or to a particular “physical
interface” (e.g., T1/E1 span, ISDN telephone
line, etc.). Only a few of the total set of
TsLink3 status subcodes are used by most
applications/cutomers.

Other messages in the set are used only for certain situations (e.g., X.25) and are not needed by most
customers. Many of the messages are for informational purposes only and these optional messages
may be ignored by customer Layer 4 software. In addition to the detailed descriptions of the
messages in this document, example Layer 4 code segments supplied with most TsLink3 customer
loads illustrate which L4<->CE<->L3 messages are needed for particular situations.
It is generally a quick convergence process for the TsLink3 customer to determine which relatively
few messages need to be sent by customer Layer 4 software and which relatively few messages need
to be handled by customer Layer 4 software received from the CE to support the customer’s
application.

1.5 Common L4<->CE and CE<->L3 Message Set

All communication among the Layer 3, CE, and Layer 4 software entities is by a common TsLink3
“l4cel3” message set where the same message set is shared across both sides of the CE and the CE
simply passes along messages between Layer 4 and Layer 3 (Q.931 NLS_*, X.25 NLP, etc., entities).
All messages in this set use a common 32-byte long “l4_ce_l3_msg” message structure and set of
message types defined in file “src\include\l4cel3.h”. A small number of “l4cel3” messages require
more room for associated parameters than will fit in the basic “l4cel3” struct. The “l4cel3” struct for
these “extra large” messages contains the length and address of an associated “Indirect Parameter
Block” (IPB) memory buffer containing the parameters that would not fit in the base “l4cel3”
message.

The CE does not usually originate or modify “l4cel3” messages as it performs its call control
sequencing and routing functions. (Exceptions are certain situations where the CE sends a copy of a

TsLink3 API Overview TeleSoft International

6 TsLink3 API Overview

connect request to more than one Layer 3 entity over time and certain error conditions where the CE
detects that a call should be torn down.)

As a message passes from the “L4/CE” interface to one of the “CE/L3” interfaces, the mnemonic for
the message type changes from the “N_” prefix to the appropriate Layer 3 message type prefix (e.g.,
“NLS_” for signaling and “NLP_” for data). However, as the name changes, the numerical
“primcode” for the message does NOT change. For example, the primcode remains 0x01 and the
“l4cel3” struct contents are identical for both the N_CONNECT_RESPONSE and the
NLS_CONNECT_RESPONSE.

The following is a C language representation of the Layer 4/CE/NLP/NLS common message
structure defined in file "include\l4cel3.h". Additional members may be added to this structure
without affecting the existing software, where specific application needs exist:

structure l4_ce_l3_msg
{
 unsigned long reserved; /* reserved for oper sys use */
 unsigned long home_exch; /* reserved for oper sys use */
 unsigned char primcode; /* primitive command code */
 unsigned char receipt; /* primitive receipt code */
 unsigned char d_attrib; /* data attributes */
 unsigned char connid; /* CONNection ID */
 unsigned short datalen; /* length of data buf */
 unsigned short refnum; /* refnum of data buf */
 unsigned char cause[2]; /* cause of DISC,RESET,STATUS */
 unsigned short lci_chantype; /* Chantype or Logical Channel Number */
 unsigned char *dataptr; /* ptr to prim-specific data buf */
} ;

TeleSoft International TsLink3 API Overview

TsLink3 API Overview 7

2. Example of Interface Functions

The following C code functions illustrate the process of formatting, sending and handling messages
sent in both directions across the TsLink3 API.

2.1 Example of an outgoing speech call connection request

The following is an example of a routine which formats and sends an N_CONN_RQ message
primitive across the TsLink3 API to setup an ISDN call.

int
sample_speech_conn_rq(unsigned char interface, unsigned char *dialed_num, unsigned char pchan)
{
 unsigned char handler_id;

 handler_id = l4_do_speech_conn_rq(interface, dialed_num, pchan);

 if(handler_id != UNUSED_CID) /* Success */
 {
 /* Store handler_id in application table for later use */
 return(0); /* Success */
 }
 else
 return(1); /* Failure */
}

2.2 Example of an outgoing disconnection request

The following is an example of a routine which formats and sends a message across the API to
disconnect a call.

void
sample_disc_rq(unsigned char handler_id)
{
 struct l4_ce_l3_msg l4_ce_struct;

 l4_do_disc_rq(handler_id);
 /* Remove handler_id from application table */
 return();
}

TsLink3 API Overview TeleSoft International

8 TsLink3 API Overview

2.3 Example of an outgoing data transfer request

The following is an example of a routine which formats and sends a primitive to transmit user data
on an established connection. Note that this is a direct copy of a supplied Function-call API routine
rather than an abstracted call of a Function-call API routine, as in the above sections. This has been
done to show the use of “buffer holes” in data transfers.

int
l4_do_data_rq(unsigned char connid, unsigned char *outgoing_data, unsigned short outgoing_length)
{
 struct l4_ce_l3_msg l4_ce_struct;
 unsigned short refnum;
 unsigned char *dataptr;
 struct connparms *conn_ptr;
 int index;
 int ret_value;

 /* Get buffer for data block */
 ret_value = getbuf(HDRSSIZE + outgoing_length, &dataptr, &refnum);
 if(ret_value) /* Buffer too big to allocate */
 return(-2);

 /*
 * Copy data into buffer, allowing for “hole” for L2/L3 protocol data use.
 * Note that this extra copy could be removed if the data (and length) passed in already allowed for the “hole” and
 * the routine passed in the refnum for a preobtained data buffer along with the outgoing_data pointer.
 */
 for(index = 0;index < outgoing_length;index++)
 *(dataptr + HDRSSIZE + index) = *(outgoing_data + index);

 l4_ce_struct.primcode = N_DATA_RQ;
 l4_ce_struct.connid = connid;
 l4_ce_struct.dataptr = dataptr;
 l4_ce_struct.refnum = refnum;
 l4_ce_struct.datalen = HDRSSIZE + outgoing_length;
 l4_ce_struct.receipt = NOACK; /* Primitive ready to be processed */

 l4_ceproc(&l4_ce_struct, LOCPROC); /* Call top of stack to process */

 if(l4_ce_struct.receipt == CMDACK) /* Primitive processed without error */
 return(0); /* Return successful */
 return(-1); /* ERROR */
}

TeleSoft International TsLink3 API Overview

TsLink3 API Overview 9

2.4 Example of incoming message processing

The following is an example of a routine which can be called from the TsLink3 routine
“ce_l4_snd()” to process messages sent “up” from the stack.

void
handle_ce_l4_prim(struct l4_ce_l3_msg *ce_l4_msg_ptr)
{
 struct connparms *conn_ptr;
 int index;

 /* May want to pass along more optional parameters – or process the code within this routine */
 switch(ce_l4_msg_ptr->primcode)
 {
 case N_CONN_IN: /* INCOMING CALL INDICATION */
 conn_ptr = (struct connparms) ce_l4_msg_ptr->dataptr; /* init temp ptr to IPB parms */
 process_conn_in(ce_l4_msg_ptr->connid, conn_ptr->voice_data, conn_ptr->svctype);
 break;
 case N_CONN_CF: /* OTHER END HAS ANSWERED AN EARLIER N_CONN_RQ WE SENT */
 process_conn_cf(ce_l4_msg_ptr->connid); /* process the call confirmation */
 break;
 case N_DISC_IN: /* OTHER END HAS DISCONNECTED */
 process_disc_in(ce_l4_msg_ptr->connid); /* process the call disconnection */
 break;
 case N_DATA_IN: /* user data has been received (not applicable for signaling-only apps) */
 /* Note, no “hole” present in incoming data – header areas have been removed as processed */
 process_incoming_data(ce_l4_msg_ptr->connid, ce_l4_msg_ptr->dataptr, ce_l4_msg_ptr->datalen);
 break;
 default: /* to handle any messages which are not needed and can be ignored */
 break;
 }
 ce_l4_msg_ptr->receipt = CMDACK; /* acknowledge the message before returning */
 if(ce_l4_msg_ptr->datalen) /* if datalen > 0, processed IBP/data buffer must be freed */
 freebuf(ce_l4_msg_ptr->refnum, 0x1234); /* second parameter may be set to unique value for tracing */
}

